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1.0  Introduction

This report describes the CHEMSODE package: a collection of FORTRAN subroutines

for the automatic integration of systems of ordinary differential equations arising in atmo-

spheric chemical kinetics. These problems can be cast in the nonlinear form:

(1)

where  is the vector of chemical concentrations,  is the vector containing the

square of each chemical concentration,  is a vector representing the “production

rate” term, while  and  are diagonal matrices representing the “loss rate”

terms. Interesting to note are the forms that these production and loss rates take. We have

, where the components of the chemical concentration vector are

raised to the powers  which are either zero or one, depending on the chemical

reactions in the problem. Further,  for each , so that  does not depend on

. The  represent reaction rates and may be time dependent (for photochemical reac-

tions, which are diurnally varying). Finally,  and  which we henceforth denote as

and , have the forms  and  where the exponents of the

chemical concentrations are again either zero or one and none of the subscripts is equal to

 [1, 4, 5, 6].

2.0  Methods and Theory

CHEMSODE uses a class of method derived from the family of implicit multistep meth-

ods called Preconditioned Time Difference methods [1]. These methods have the advan-

tage that they are highly stable for stiff problems, while being explicitly computable and

requiring no Jacobian matrix for the class of chemical kinetics equations (1).
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We illustrate the basic idea behind preconditioned time differencing by considering the

first order nonlinear system of ordinary differential equations:

(2)

A k step implicit multistep formula for solving these equations is

(3)

(with , , , ., and  a

known vector).

Fixed point iteration for the solution of the nonlinear system in Eq. (3) begins by defining

the function

and then performing the iteration

Convergence of the iteration to  will occur if the initial guess  is chosen in

a neighborhood of contraction of  about , [1]. If  is not contractive at  then

the fixed point iteration may diverge.

The problem of diverging or slowly converging fixed point iteration schemes can often be

rectified by “preconditioning”. That is, a function  is defined such that

; the iterates are then computed in the following fashion:

If this procedure were to converge, say to , then we see that
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(4)

and the desired solution is obtained. Although each iteration requires the solution of

another non-linear system of equations, this may not be difficult if the preconditioner  is

defined appropriately. In this report, we consider the Jacobi preconditioner

, [1].

Now, if the iteration is terminated prematurely after, say,  iterations and we set

, then we generate time differencing methods of the form:

1. Set  (the initial guess).

2. For , compute

3. Set

These are the so-called Preconditioned Time Differencing methods.

2.1  A First Order Method

To illustrate, consider the application of the Jacobi preconditioner to the backward Euler

method and use  (known as the identity predictor) as the initial guess. Tak-

ing only a single iteration ( ), we then have:

. (5)

Additional iterations would yield:

(6)

which, when applied to Eq. (1) give us:

(7)
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We see that we must solve a quadratic equation to obtain . The two roots of this

equation are a positive and a negative real number and we set  to be the positive

root. Even with a single iteration, this method retains the first order accuracy of the back-

ward Euler method, and seems to be unconditionally stable for the class of chemical kinet-

ics problems [1]. Note that it is explicitly computable.

2.2  A Second Order Method

The implementation of a second order technique proceeds along similar lines: We start

with the trapezoidal rule, and apply the Jacobi preconditioner. In this case, however, we

must use at least a first order predicted value for  to retain the method’s second

order accuracy [1]. In this report, we use the first order Jacobi preconditioned method (7)

to obtain this predicted value, because of its superior stability.

The algorithm and component equations for a single iteration of this method, taken from

[1], are:

1. Set , the computed value from the Jacobi preconditioned Backward

Euler method.

2. Calculate  using these values

3. Solve

(8)

for  using the positive root. Multiple iterations, as in (7) are implemented in the obvi-

ous way.

Error control is a significant challenge for these methods. The choices are extreme with lit-

tle possibility for an “in between” compromise. In [1], we used a method of comparing the
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calculation of two half steps with a single whole step. This was fairly accurate but obvi-

ously expensive. The alternative is an inaccurate estimate of a quantity that “looks like”

our truncation error where we hope to err on the conservative side. We thus use the local

error indicator:

(9)

with . This indicator gives us an estimate of ,

which is a bit conservative, but was used with success in [5]. Given the values ATOL(I)

and RTOL(I), the componentwise absolute and relative tolerances, we compute the value

(10)

If this value is less than one, the step is accepted. The new stepsize is computed using the

formula

, (11)

subject to prescribed minimum and maximum values (to be described later) and a maxi-

mum ratio increase.

CHEMSODE is written in the same spirit as the more general LSODE package [3], used

for the automatic integration of the general first order ODE system.

3.0  Code

At this time, CHEMSODE uses a second order method (the trapezoidal rule) with a Jacobi

preconditioner (one iteration). The package consists of the following subroutines:

3.0.1  SOLVER

SOLVER is the driver for the package. It takes the following arguments:
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• F: (EXT) Name of the subroutine for the right hand side of the ODE system (the deriv-

ative). This is supplied by the user and must be declared as EXTERNAL in the calling

program, having the form

SUBROUTINE F(NEQ, T, Y, P, LHAT, LBAR)
INTEGER NEQ
REAL T, Y(NEQ), P(NEQ), LHAT(NEQ), LBAR(NEQ)

The inputs are NEQ, T and Y (the number of ODEs, current time and chemical species

concentrations). F is to set the chemical production and loss terms P(i), LHAT(i),

LBAR(i).

• NEQ: (IN) The number of first order ODEs.

• Y: (INOUT) Array of components of the Y(t) (dependent variable) from Eq. (1). Y

shall be dimensioned at least NEQ elements long. On initial call, it contains the species

concentrations at t = T. On return, it contains the values at t = TOUT (see below).

• T: (INOUT) Value of the independent variable. Upon return, it will contain the value

TOUT.

• TOUT: (IN) The next point where output is desired.

• ATOL: (IN) Array of absolute error tolerances (size NEQ).

• RTOL: (IN) Array of relative error tolerances (size NEQ).

• RWORK: (WORK) This work array must be dimensioned at least 10 * NEQ real ele-

ments long. It is also used to pass optional arguments to the solver (see below IOPT).

• IOPT: (IN) Indicates whether the user has supplied optional input. IOPT = 0 indicates

no optional input. IOPT = 1 indicates that RWORK(1) contains the first stepsize to be

attempted, RWORK(2) contains the maximum allowable stepsize, and RWORK(3)

contains the minimum allowable stepsize. Default values recently used are RUMACH

(see below), 1 second, and 1 hour respectively. A non-zero minimum is required since

our “loose” method of step control has problems otherwise.

• ITASK: (IN) Indicates whether the call is a continue or a restart. ITASK = 0 indicates a

restart. ITASK = 1 indicates a continue.
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A flowchart for SOLVER is provided in Figure 2, and is very run-of-the-mill for this type

of code. At this stage there is very little error checking and recovery, however the code has

proven to be quite bullet-proof in our experiences. In adjusting the new stepsize, if two

successive steps are rejected, the stepsize is automatically reduced to the minimum allow-

able; that is, the method is restarted.

3.0.2  STEP2

STEP2 takes a single discrete time step and returns an estimate of the error to the

SOLVER routine. The stepsize attempted is specified by the SOLVER routine. The error

estimate is based on the formula of Eq (9). This information is passed back to the

SOLVER routine which calculates the quantities in Eqs. (10) and (11) and accepts or

rejects the step accordingly (while adjusting the stepsize for the next try).

3.0.3  ADVANCE2

ADVANCE2 implements the component equations for the preconditioned trapezoidal rule

assuming that the production and loss rates are set. It essentially provides for the solution

of Eq (8) for  assuming all other values are explicitly known (which they are). It uses

a scalar newton iteration and a fixed number of iterations (two). This works well with a

close enough initial guess (  -- not to be confused with the initial guess for the precondi-

tioner). Attempts at using the quadratic formula proved unsuccessful since it requires the

subtraction of two positive quantities that are nearly equal.

3.0.4  ADVANCE1

ADVANCE1 implements the component equations for the preconditioned backward Euler

method, again assuming that the production and loss rates are set. This is Eq (7) and is

done in a manner identical with that in ADVANCE2.

3.0.5  RUMACH

RUMACH calculates the machine’s unit roundoff in a machine independent manner.

yi
n 1+

yi
n
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FIGURE 1. CHEMSODE subroutine calling hierarchy.
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FIGURE 2. Flowchart for the CHEMSODE algorithm. (Subroutine SOLVER)
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4.0  Code usage and Example Problem

The reader will find strong similarities between LSODE’s calling sequence (and parame-

ters) and CHEMSODE’s. CHEMSODE’s parameters shall be declared as follows:

INTEGER NEQ, IOPT
REAL Y(NEQ), T, TOUT, ATOL(NEQ), RTOL(NEQ)
REAL RWORK(10*NEQ)
EXTERNAL F

The solver is then called in the main program

CALL SOLVER(NEQ, F, Y, T, TOUT, ATOL, RTOL,
1 RWORK, IOPT, ITASK)

4.1  EXAMPLE

We use a simple problem from chemical kinetics. The Chapman atmosphere has been

dealt with previously [1, 2]. It can be written in a simplified form Eq. (1) for ,

with

(12)

(13)

and the constant values

y
y1

y2

=

P y t,( )
2k3 t( ) y3 k4 t( ) y2+

k1y1y3

=
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L 0=( )
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and

(14)

with

The constant 43200 is just twelve hours in seconds, so that the diurnally varying rates (

and ) have 24 hour periods. Initial conditions are . The

Chapman mechanism has important characteristics shared by the larger problems in atmo-

spheric chemistry in that:

• The Jacobian of the differential system is non-constant.

• The diurnal effect is present.

• The oscillations are fast (in comparison to the scale of integration),

cf. [1, 2]. This problem can be coded:

  PROGRAM TEST

      INTEGER NEQ, IOPT
      REAL Y(2), T, TOUT, ATOL(2), RTOL(2)
      REAL RWORK(20)
      EXTERNAL FEX

      IOPT = 0
      ITASK = 0

      NEQ = 2
      T = 0.0
      TOUT = 1.0 * 86400.0
      ATOL(1) = 1.0E-2
      ATOL(2) = 1.0E-2
      RTOL(1) = 1.0000E-4
      RTOL(2) = 1.0000E-4
      Y(1) = 1.0E6
      Y(2) = 1.0E12

ki
exp

ai−
ωtsin

ωtsin 0>,

0 ωtsin 0≤,
i,





3 4,= =

a3 22.62 a4, 7.601 ω,
π

43200
= = =

k3

k4 y1 0( ) 106 y2 0( ), 1012= =
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      CALL SOLVER(NEQ, FEX, Y, T, TOUT, ATOL, RTOL,
1RWORK, IOPT, ITASK)

      PRINT *, 'VALUES AT TIME ', T, ' ARE ', Y

      END

      SUBROUTINE FEX(NEQ, T, Y, P, LHAT, LBAR)

      INTEGER NEQ
      REAL T, Y(*), P(*), LHAT(*), LBAR(*)

      REAL K1, K2, Y3
      REAL K3, K4
      REAL K
      PARAMETER (K1 = 1.63E-16)
      PARAMETER (K2 = 4.66E-16)
      PARAMETER (Y3 = 3.7E16)

      P(1) = 2.0 * K3(T) * Y3 + K4(T) * Y(2)
      P(2) = K1 * Y(1) * Y3

      LHAT(1) = K1 * Y3 + K2 * Y(2)
      LHAT(2) = K2 * Y(1) + K4(T)

      LBAR(1) = 0.0
      LBAR(2) = 0.0

      RETURN
      END

      REAL FUNCTION K3(T)

      REAL T

      REAL PI, OMEGA, A3
      PARAMETER (PI = 3.14159265358979323846264338)
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      PARAMETER (OMEGA = PI/43200.0)
      PARAMETER (A3 = 22.62)
      REAL TEMP

      TEMP = SIN(T * OMEGA)

      IF (TEMP .GT. 0.0) THEN
K3 = EXP(-A3 / TEMP)

      ELSE
K3 = 0.0

      END IF

      RETURN
      END

      REAL FUNCTION K4(T)

      REAL T

      REAL  PI, OMEGA, A4
      PARAMETER (PI = 3.14159265358979323846264338)
      PARAMETER (OMEGA = PI/43200.0)
      PARAMETER (A4 = 7.601)
      REAL TEMP

      TEMP = SIN(T * OMEGA)

      IF (TEMP .GT. 0.0) THEN
 K4 = EXP(-A4 / TEMP)

      ELSE
K4 = 0.0

      END IF

      RETURN

      END
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6.0  Appendix: The Box Model

CHEMSODE is currently being applied to a set of chemical kinetic equations taken from

the LLNL two dimensional chemical-radiative-transport model of the earth’s atmosphere

[7]. The “Box Model” has been developed to isolate these equations from the other unre-

lated processes taking place in the full models (e.g. advection, diffusion). It uses the same
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chemistry and associated radiative transfer calculations as the full model. The attempt is to

isolate a single zone from the full model in order to more accurately test the merits of var-

ious chemical kinetics solvers.

Initial tests are being run with a set of twenty chemical species listed in the following

tables. Photolytic and thermal reactions, along with the two species assumed to be in equi-

librium are also given.

TABLE I. Chemically reactive species used in the box model.

TABLE II. Chemical species assumed to be in steady state for the box model.

TABLE III. Thermal reactions in the Box Model

O3 N2O NO NO2 NO3 N2O5

HONO HNO3 HO2NO2 H2O OH HO2

H2O2 H2 CH4 CH3O2 CH3OOH CH2O

CO CH3O2NO2

O D1( ) O

O O2+ → O3

O O3+ → 2O2

O D1( ) N2+ → O N2+

O D1( ) O2+ → O O2+

O D1( ) O3+ → 2O2

O D1( ) O3+ → O2 2O+

H2O O D1( )+ → 2OH

O D1( ) H2+ → OH HO2+

N2O O D1( )+ → N2 O2+

N2O O D1( )+ → 2NO
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TABLE III. Thermal reactions in the Box Model

CH4 O D1( )+ → CH2O H2+

CH4 O D1( )+ → CH3O2 OH+

H2 OH+ → H2O HO2+

OH O3+ → HO2 O2+

OH O+ → O2 HO2+

HO2 O+ → OH O2+

HO2 O3+ → OH 2O2+

HO2 OH+ → H2O O2+

HO2 HO2+ → H2O2 O2+

2HO2 H2O+ → H2O2 O2 H2O+ +

H2O2 OH+ → H2O HO2+

NO O3+ → NO2 O2+

NO OH+ → HONO

NO HO2+ → NO2 OH+

NO2 O+ → NO O2+

NO2 O3+ → NO3 O2+

NO2 HO2+ → HO2NO2

NO3 NO2+ → N2O5

N2O5 → NO3 NO2+

NO2 OH+ → HNO3

HONO OH+ → H2O NO2+

HNO3 OH+ → H2O NO O2+ +

HNO3 OH+ → H2O NO2 O+ +

HO2NO2 → HO2 NO2+

HO2NO2 OH+ → H2O NO2 O2+ +

CO OH+ → HO2

CH4 OH+ → CH3O2 H2O+

CH2O OH+ → H2O HO2 CO+ +

CH3O2 O+ → CH2O HO2+
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TABLE IV. Photolytic Reactions in the Box Model

TABLE III. Thermal reactions in the Box Model

CH2O O+ → HO2 OH CO+ +

CH3O2 HO2+ → CH3OOH O2+

CH3O2 CH3O2+ → 2CH2O 1.4HO2+

CH3O2 NO+ → HO2 CH2O NO2+ +

CH3O2 NO2+ → CH3O2NO2

CH3O2NO2 → CH3O2 NO2+

CH3OOH OH+ → CH2O H2O OH+ +

CH3OOH OH+ → CH3O2 H2O+

O2 hν+ → 2O

O3 hν+ → O O2+

O3 hν+ → O D1( ) O2+

H2O2 hν+ → 2OH

NO2 hν+ → NO O+

N2O hν+ → N2 O D1( )+

NO3 hν+ → NO2 O+

NO3 hν+ → NO O2+

N2O5 hν+ → NO2 NO O2+ +

N2O5 hν+ → 2NO2 O+

N2O5 hν+ → NO2 NO 2O+ +

N2O5 hν+ → 2NO O2 O+ +

HONO hν+ → OH NO+

HNO3 hν+ → OH NO2+

HO2NO2 hν+ → OH NO O2+ +

HO2NO2 hν+ → OH NO2 O+ +

HO2NO2 hν+ → HO2 NO2+

CH2O hν+ → CO H2+

CH2O hν+ → 2HO2 CO+
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TABLE IV. Photolytic Reactions in the Box Model

CH3OOH hν+ → CH2O HO2 OH+ +

CH3O2NO2 hν+ → CH3O2 NO2+
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